Novel Cephalosporins Having a Benzothiopyran Group 1. Synthesis and Antibacterial Activity of Cephalosporin Derivatives Characterized by Novel C-3 Substituents of Benzothiopyran

KIKOH OBI, TATSUHIRO SAITO, HIDEYUKI FUKUDA, KEIJI HIRAI and SEIGO SUZUE*

> Central Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Mitarai, Nogi-machi, Shimotsuga-gun, Tochigi-ken 329-01, Japan

(Received for publication October 11, 1994)

In recent years, a number of cephalosporin antibiotics having a broad spectrum and resistance to β -lactamase have been developed.¹⁾ They have a heterocyclic group and 7β -[2-(2-aminothiazol-4-yl)-(Z)-2-alkoxyiminoacetamido]group at 3-position and 7-position of cephalosporin nucleus, respectively, but show weak or moderate antibacterial activity against Gram-positive bacteria including *Staphylococcus aureus* and *Enterococcus faecalis*.

The following were suggested from the structure-activity relationships in the past reports: 1) C-3 side chains involving a ketene dithioacetal moiety provide good anti Gram-positive bacterial activity, as exemplified by cefuzonam (CZON)²⁾ and 2) electron-withdrawing group linking to C-3 position of cephalosporin nucleus enhance reactivity of β -lactam ring, thus, leading to rise

in antibacterial activity. $^{3\sim6}$ These led us consider that the 2-position of 4-oxo-4*H*-1-benzothiopyran nucleus attached to the 3-position of the cephalosporin nucleus through a thiomethyl linkage would be effective in strengthening the activity against both of Gram-positive and Gram-negative bacteria (Fig. 1). Therefore, we designed a novel series of 7β -[2-(2-aminothiazol-4-yl)-(Z)-2-alkoxyiminoacetamido]cephalosporins having a 4-oxo-4*H*-1-benzothiopyran-2-ylthiomethyl group at the C-3 position, which bore keten dithioacetal system and α,β -unsaturated ketone system as electron-withdrawing group.

In this paper, we describe the synthesis and antibacterial activity of a novel series of cephalosporins having 4-oxo-4*H*-1-benzothiopyran-2-ylthiomethyl group as C-3 side chain represented by formula I (Fig. 1).

Chemistry

The typical procedure is shown in the Scheme 1. Treatment of the sulfoxide (III)⁷⁾ with the mercaptan (III)^{8,9)} afforded the 3-substituted cephem. After reduction of sulfoxide by PBr₃, the protecting groups of IV were removed by treatment with TFA in the presence of anisole to give the desired novel cephalosporins. 1: ^{1}H NMR (CD₃OD) δ 3.43 (1H, d, J=18 Hz), 3.77 (1H, d, J=18 Hz), 3.96 (3H, s), 4.10 (1H, d, J=13 Hz), 4.70 (1H, d, J=13 Hz), 5.08 (1H, d, J=5 Hz), 5.75 (1H, d, J=5 Hz), 6.83 (1H, s), 7.05 (1H, s), 7.54 ~ 7.73 (2H, m), 7.75 (1H, d, J=8 Hz), 8.38 (1H, dd, J=1 and 8 Hz); IR (KBr) cm⁻¹ 1765, 1603, 1530; FAB-MS m/z 612 (M+H)⁺.

Table 1. In vitro antibacterial activity (MIC, μ g/ml) of 2-aminothiazol-4-yl-2-(Z)-methoxy-imino derivatives (1 ~ 10).

$$H_2N$$
 N
 OCH_3
 H
 N
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 $OCH_2S - R$
 $OCH_2S - R$

Compound		S. a. 209P JC-1	S. p. HD692	E. f. HD682	E. c. NIHJ	P. v. IFO3167	P. a.
No.	R	209P JC-1	1110692	11D682	JC-2	1FO3167	V-1
1		0.10	≤0.0063	12.5	≤0.0063	≤0.0063	3.13
2	S F	0.10	≤0.0063	6.25	≤0.0063	0.025	6.25
3	S OCH ₃	0.39	≤0.0063	50	0.20	0.10	50
4		0.10	≤0.0063	12.5	0.0125	0.025	12.5
5	S F NHN S N S N CH ₃	0.39	0.025	50	0.05	0.10	25
6	S F F	0.20	≤0.0063	25	0.025	0.025	6.25
7	EIOOC F	0.39	0.0125	100	0.10	0.39	25
8	HOOC F	6.25	0.05	>100	0.78	0.0125	>100
9	EtOOC	0.39	≤0.0063	25	0.05	0.20	25
10	NC S	12.5	0.05	>100	0.05	0.20	25

Abbreviations: S.a., Staphylococcus aureus; S.p., Streptococcus pyogenes; E.f., Enterococcus faecalis; E.c., Escherichia coli; P.v., Proteus vulgaris; P.s., Pseudomonas aeruginosa.

Biological Results and Discussion

The antibacterial activities (MICs) were determined by the standard serial 2-fold agar dilution method using Mueller-Hinton agar against selected organisms.

Table 1 summarizes the antibacterial activities of 7β -[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-(4-oxo-4H-1-benzothiopyran-2-yl)thiomethyl-3-cephem-4-carboxylates. Among the compounds, 1, 2, 4 and 6 were highly active against Gram-negative and Gram-positive bacteria including *E. faecalis*. This activity was higher than those of 3 and 5. These data suggested that the introduction of bulky substituents in the benzothiopyran ring resulted in the reduction of the antibacterial activity against Gram-positive and also Gram-negative bacteria.

The introduction of electron-withdrawing group to the 3-position of 4-oxo-4*H*-1-benzothiopyran nucleus (7, **8**, **9** and **10**) exerted no enhancing effect on the antibacterial activity, although their molecular design was based on the electron-withdrawing effect. The activity of simplified compounds (1 and 2) was found to be superior

to that of another cephalosporin derivatives bearing substituents on the benzothiopyran ring.

Table 2 shows the effect of the oxime substituent (R') in a novel cephalosporin on the MIC. The hydroxyimino analogs (11, 12 and 15) were 2- to 4-fold more active against Gram-positive organisms than corresponding methoxyimino analogs. Especially, 11, 12 and 15 exhibited excellent and moderate antibacterial activity against Gram-positive bacteria including *E. faecalis* and Gram-negative bacteria. It was characteristic that they showed excellent antibacterial activity against *E. faecalis* as compared with other general cephalosporins. The carboxylic acid analogs 13 and 14 were 2- to 10-fold less active than methoxy analog (2) against most bacteria except *Proteus vulgaris*.

A comparison of the 4-oxo-4*H*-1-benzothiopyran with another heterocyclic ring system for the activities was indicated in Table 3. The compound 1 was more active than the 4-oxochromen-2-yl group (16) and the 4-oxo-3*H*-quinazolin-2-yl group (17) against Gram-positive bacteria and Gram-negative bacteria, especially 2- to

Table 2. *In vitro* antibacterial activity (MIC, μ g/ml) of 2-aminothiazol-4-yl-2-(Z)-alkoxyimino derivatives.

	Compound		S. a.	S. p.	E. f.	E. c.	P. v.	P. a.
No.	R	R'	209P JC-1	HD692	HD682	NIHJ JC-2	IFO3167	V-1
11		н	0.05	≤0.0063	6.25	≤0.0063	0.10	50
1		СНз	0.10	≤0.0063	12.5	≤0.0063	≤0.0063	3.13
12		н	0.05	≤0.0063	6.25	0.025	0.10	100
2	بُ	CH ₃	0.10	≤0.0063	6.25	≤0.0063	0.025	6.25
13	୵ _ଃ ୵୵ _ଽ	CH2COOH	1.56	0.05	>100	0.0125	≤0.0063	12.5
14		C(CH ₃) ₂ COOH	0.78	0.10	>100	0.05	≤0.0063	12.5
15		н	0.025	≤0.0063	12.5	0.0125	0.39	50
4		СНз	0.10	≤0.0063	12.5	0.0125	0.025	12.5

Abbreviations: See footnote in Table 1.

Table 3. The efficacy of antibacterial activity in comparison with cephalosporins having another heterocyclic ring.

R	, S		N N N N N N N N N N N N N N N N N N N	N, N	N CH₃ CH₂COOH
Compound No.	1	16	H 17	CZON	CDZM
S. a. 209P JC-1	0.10	0.20	0.78	0.10	3.13
S. p. HD692	≤0.0063	≤0.0063	≤0.0063	≤0.0063	0.05
E. f. IID682	12.5	50	50	100	100
E. c. NIHJ JC-2	≤0.0063	≤0.0063	0.0125	≤0.0063	≤0.0063
P. v. IFO3167	≤0.0063	0.0125	0.05	≤0.0063	≤0.0063
P. a. V-1	3.13	12.5	50	3.13	12.5

Abbreviations: See footnote in Table 1.

16-fold more active against *E. faecalis* and *P. aeruginosa*. Although 1 showed roughly comparable effects to CZON against almost bacteria tested, it was 4-fold more active against *E. faecalis* than cefodizime (CDZM)¹⁰ and CZON. This excellent anti-*E. faecalis* activity was also superior to those of recent advanced cephalosporins including cefpirome (the MIC against *E. faecalis* IID 682 was $50 \mu g/ml$, data not shown), which was one of the most active cephalosporins against *E. faecalis*.

We found that AM-1601 (1) had highly potent antibacterial activity against both Gram-positive and Gramnegative bacteria including *Enterococcus faecalis*. The ring system of α,β -unsaturated ketone was needed for good antibacterial activity and substitution of sulfur atom at the β -position of α,β -unsaturated ketone was essential for the expansion of the antibacterial spectrum.

These results indicate that introduction of 4-oxo-4*H*-1-benzothiopyran-2-yl group at the C-3 side chain of the cephalosporin nucleus leads to expand the spectrum and the 4-oxo-4*H*-1-benzothiopyran nucleus is one of the useful substituents at the C-3 side chain in cephalosporin chemistry.

References

- DRUCKHEIMER, W.; F. ADAM, G. FISCHER & R. KIRRSTETTER: Recent developments in the field of cephem antibiotics. In Advances in Drug Research. Ed., B. Testa, pp. 61 ~ 234, Academic Press, 1988
- 2) Curran, W. V. & A. A. Ross: 7β -[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-[(1,2,3-thiadiazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic acid a new potent cephalosporin derivative. J. Antibiotics 36: $179 \sim 180$, 1983
- 3) BOYD, D. B.: Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J. Med. Chem. 27: 63 ~ 66, 1984
- NARISADA, M.; J. NISHIKAWA, F. WATANABE & Y. TERUI: Synthesis and 3'-substituent effects of some 7α-methoxy-1-oxacephems on antibacterial activity and alkaline hydrolysis rates. J. Med. Chem. 30: 514~522, 1987
- 5) NISHIKAWA, J.; F. WATANABE, M. SHUDOU, Y. TERUI & M. NARISADA: ¹H NMR study of degradation mechanisms of oxacephem derivatives with various 3'substituents in alkaline solution. J. Med. Chem. 30: 523~527, 1987

- 6) Murakami, M.; T. Aoki & W. Nagata: 1-Oxacephems with the thienamycin-type side chain (1). synthesis and antibacterial activity of 7α-[(1R)-1-hydroxyethyl]-1-oxacephems bearing electron-withdrawing groups. Heterocycles 30: 567 ~ 581, 1990
- NAITO, T.; S. ABURAKI, H. KAMACHI, Y. NARITA, J. OKUMURA & H. KAWAGUCHI: Synthesis and structure-activity relationships of a new series of cephalosporins, BMY-28142 and related compounds. J. Antibiotics 39: 1092~1107, 1986
- RUDORF, W.-D.; A. SCHIERHORN & M. AUGSTIN: Reaktionen von o-Halogenacetophenonen mit schwefelkohlenstoff und Phenylisothiocyanat. Tetrahedron 35: 551~556, 1979
- 9) Suzue, S.; K. Obi, T. Saito, K. Hirai & H. Fukuda (Kyorin Pharmaceutical Co.): Preparation of 3-[(benzothiopyranonylthio)methyl]cephem carboxylates as antibiotics. EP 481441, Apr. 22, 1992 [Chem. Abstr. 118: 233758y, 1993]
- 10) LIMBERT, M.; N. KLESEL, K. SEEGER, G. SEIBERT, I. WINKLER & E. SCHRINNER: Cefodizime, an aminothia-zolylcephalosporin. I. in vitro activity. J. Antibiotics 37: 892~900, 1984